Para receber por e-mail novas publicações de Seminário de Álgebra,

**Clique Aqui!**Seminários do IMPA

Álgebra

Título |
Developable cubics in $\mathbb P^4$ and the Lefschetz locus in $GOR(1,5,5,1)$ |

Expositor |
Rodrigo Gondim
UFRPE |

Data |
Quarta-feira, 22 de janeiro de 2020, 15:00 |

Local |
Sala 228 |

Resumo |

We provide a classification of developable cubic hypersurfaces in $\mathbb P^4$. Using the correspondence between forms of degree $3$ on $\mathbb P^4$ and Artinian Gorenstein $K$-algebras, given by Macaulay-Matlis duality, we describe the locus in $GOR(1,5,5,1)$ corresponding to those algebras which satisfy the Strong Lefschetz property. It is the first instance where this locus was completely described.