Para receber por e-mail novas publicações de Seminário de Álgebra, Clique Aqui!

Seminários do IMPA

Álgebra

Título
Developable cubics in $\mathbb P^4$ and the Lefschetz locus in $GOR(1,5,5,1)$
Expositor
Rodrigo Gondim

UFRPE
Data
Quarta-feira, 22 de janeiro de 2020, 15:00
Local
Sala 228
Resumo

We provide a classification of developable cubic hypersurfaces in $\mathbb P^4$. Using the correspondence between forms of degree $3$ on $\mathbb P^4$ and Artinian Gorenstein $K$-algebras, given by Macaulay-Matlis duality,  we describe the locus in $GOR(1,5,5,1)$ corresponding to those algebras which satisfy the Strong Lefschetz property. It is the first instance where this locus was completely described.