Para receber por e-mail novas publicações de Seminário de Probabilidade e Combinatória, Clique Aqui!

Seminários do IMPA

Probabilidade e Combinatória

Título
The Constrained-degree percolation model
Expositor
Bernardo N. B. de Lima

UFMG
Data
Quarta-feira, 15 de janeiro de 2020, 15:30
Local
Sala 345
Resumo

In the Constrained-degree percolation model on a graph $(V,E)$ there are a sequence, $(U_e)_{e\in E}$, of i.i.d. random variables with distribution $U[0,1]$ and a positive integer $k$. Each bond $e$ tries to open at time $U_e$, it succeeds if both its end-vertices would have degrees at most $k-1$. We prove a phase transition theorem for this model on the square lattice $\mathbb{L}^2$, as well as on the d-ary regular tree. We also prove that on the square lattice the infinite cluster is unique in the supercritical phase.

 

Joint work with R. Sanchis, D. dos Santos, V. Sidoravicius and R. Teodoro