Para receber por e-mail novas publicações de Seminário de Geometria Diferencial, Clique Aqui!

Seminários do IMPA

Geometria Diferencial

Título
Asymptotic Plateau problem for prescribed mean curvature hypersurfaces
Expositor
Ilkka Holopainen

University of Helsinki
Data
Terça-feira, 26 de novembro de 2019, 15:30
Local
Sala 236
Resumo

I will talk on a recent joint paper with Jean-Baptiste Casteras and Jaime Ripoll.


Let $N$ be an $n$-dimensional Cartan--Hadamard manifold that satisfies the so-called strict convexity condition and has strictly negative upper bound for sectional curvatures, $K\le-\alpha^2<0$. Given a suitable subset $L\subset\partial_\infty N$ of the asymptotic boundary of $N$ and a continuous function $H\colon N\to [-H_0,H_0],\ H_0<(n-1)\alpha$, we prove the existence of an open subset $Q\subset N$ of locally finite perimeter whose boundary $M$ has generalized mean curvature $H$ towards $N\setminus Q$ and $\partial_\infty M=L$. By regularity theory, $M$ is a $C^2$-smooth $(n-1)$-dimensional submanifold up to a closed singular set of Hausdorff dimension at most $n-8$. In particular, $M$ is $C^2$-smooth if $n\le 7$. Moreover, if $H\in [-H_0,H_0]$ is constant and $n\le 7$, there are at least two disjoint hypersurfaces $M_1$, $M_2$ with constant mean curvature $H$ and $\partial_\infty M_i=L,\ i=1,2$.

Our results generalize those of Alencar and Rosenberg, Tonegawa, and others.